12 research outputs found

    Deep Learning Models For Biomedical Data Analysis

    Get PDF
    The field of biomedical data analysis is a vibrant area of research dedicated to extracting valuable insights from a wide range of biomedical data sources, including biomedical images and genomics data. The emergence of deep learning, an artificial intelligence approach, presents significant prospects for enhancing biomedical data analysis and knowledge discovery. This dissertation focused on exploring innovative deep-learning methods for biomedical image processing and gene data analysis. During the COVID-19 pandemic, biomedical imaging data, including CT scans and chest x-rays, played a pivotal role in identifying COVID-19 cases by categorizing patient chest x-ray outcomes as COVID-19-positive or negative. While supervised deep learning methods have effectively recognized COVID-19 patterns in chest x-ray datasets, the availability of annotated training data remains limited. To address this challenge, the thesis introduced a semi-supervised deep learning model named ssResNet, built upon the Residual Neural Network (ResNet) architecture. The model combines supervised and unsupervised paths, incorporating a weighted supervised loss function to manage data imbalance. The strategies to diminish prediction uncertainty in deep learning models for critical applications like medical image processing is explore. It achieves this through an ensemble deep learning model, integrating bagging deep learning and model calibration techniques. This ensemble model not only boosts biomedical image segmentation accuracy but also reduces prediction uncertainty, as validated on a comprehensive chest x-ray image segmentation dataset. Furthermore, the thesis introduced an ensemble model integrating Proformer and ensemble learning methodologies. This model constructs multiple independent Proformers for predicting gene expression, their predictions are combined through weighted averaging to generate final predictions. Experimental outcomes underscore the efficacy of this ensemble model in enhancing prediction performance across various metrics. In conclusion, this dissertation advances biomedical data analysis by harnessing the potential of deep learning techniques. It devises innovative approaches for processing biomedical images and gene data. By leveraging deep learning\u27s capabilities, this work paves the way for further progress in biomedical data analytics and its applications within clinical contexts. Index Terms- biomedical data analysis, COVID-19, deep learning, ensemble learning, gene data analytics, medical image segmentation, prediction uncertainty, Proformer, Residual Neural Network (ResNet), semi-supervised learning

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Comparing performance between the baselines and the proposed method based on various evaluation metrics and corresponding standard deviations.

    No full text
    F32_R50 and F32_M denotes FCN32_ResNet50 and FCN32_MobileNet while EMV, EECE, EMCE), and EMVEM denotes Ensemble (Majority Voting (MV), EMV), Ensemble (Weighted Voting (ECE), EECE), Ensemble (Weighted Voting (MCE), EMCE), and Ensemble (Majority Voting + ECE + MCE (MVEM), EMVEM).</p

    Diagram for building a bagging deep learning model.

    No full text
    The model can be different deep learning models such as convolutional neural networks (CNN) and recurrent neural networks RNN) for different applications.</p

    Diagram of building and testing calibrated bagging deep learning based on calibration error (CE).

    No full text
    SR denotes segmentation result generated by individual deep learning model.</p

    Comparing performance of the proposed methods built with different number of individual models.

    No full text
    Comparing performance of the proposed methods built with different number of individual models.</p

    An example of CXR image and corresponding ground truth.

    No full text
    (a) original image. (b) ground truth.</p

    Comparison of prediction visualization produced by the proposed methods built with different number of individual models.

    No full text
    For instance, in the second row, it presents the prediction results generated by ensemble models that are built with three individual models, namely, FCN32_RESNET50, FCN32, UNet with voting strategies. In the predictions, purple color, yellow color, and green color denotes background, incorrect prediction, and correct prediction, respectively, where the smaller region of yellow color means higher performance. (a) original image, (b) ground truth, (c) F32 R50, (d) EECE 3, (e) EMCE 3, (f) EMVEM 3, (g) EECE 5, (h) EMCE 5, (i) EMVEM 5.</p

    Hyper-parameters of baselines for COVID-19 image segmentation.

    No full text
    Hyper-parameters of baselines for COVID-19 image segmentation.</p
    corecore